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Definitions[A. Amini,B. Amini, Ershad, Sharif-2007]

Let R be an associative ring with 1. All modules are unital. Ring
homomorphisms preserve 1.

I Let F and M be right R-modules such that FR is flat. A
module epimorphism f : F → M is said to be a G-flat cover of
M if Ker (f ) is a small submodule of F .

I A ring R is called right generalized perfect (right G -perfect,
for short) if every right R-module has a G -flat cover.

I A ring R is called G-perfect if it is both left and right
G -perfect.
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I { perfect rings } ⊆ { G -perfect rings }
I { Von Neumann regular rings } ⊆ { G -perfect rings }
I { G -perfect rings } is closed under finite products and

quotients.



Definition (due to Auslander and Enochs)
Let C be a class of right R-modules, and let MR be a right
R-module.
A module homomorphism f : C → M is a C-precover of M if it
satisfies that

(i) C ∈ C;

(ii) any diagram with C ′ ∈ C

C ′

C M 0

ppppppp	 ?
-f -

can be completed to a commutative diagram.

The homomorphism f is a C-cover if, in addition, it is right
minimal.
Recall that f : C → M is said to be right minimal if for any
g ∈ EndR(C ), f = fg implies g bijective
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I Any flat precover is onto.

I Any module has a flat cover in the sense of Enochs.

I In the case of perfect rings projective covers, flat covers and
G -flat covers coincide.

I In the case of von Neumann regular rings flat covers are
G -flat covers
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E = {B ∈ Mod-R|Ext1R(L,B) = 0 for any flat LR} is called the
class of (Enochs) cotorsion modules.

I Kernel of any flat cover is a cotorsion module.

I Any MR fits into an exact sequence
0→ B → L

g→ M
where L is flat and B is cotorsion. g is a flat precover.
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Example due to A. Amini,B. Amini, Ershad, Sharif-2007

Let R be a regular ring which is not a right V -ring.

Then there
exist a right R-module M such that M $ E = E (M).

I Case 1 Soc(E/M) = 0. π : E → E/M and i : E/M → E/M
are both G -flat covers of E/M. But E � E/M.

I Case 2 Soc(E/M) 6= 0. There is KR ⊆ ER such that K/M is
a simple R-module. π : K → K/M and i : K/M → K/M are
both G -flat covers of K/M. But K � K/M.
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Some results from A. Amini,B. Amini, Ershad, Sharif-2007

I R is right G -perfect =⇒ J(R) is right T -nilpotent.

I R is right duo and right G -perfect =⇒ R/J(R) is von
Neumann regular.

Conjecture: R is right G -perfect =⇒ semiregular ???
Our Answer: No!!!
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Basic Definitions

A pair (X ,Y) of subclasses of Mod-R is said to be a torsion pair if

(i) HomR(X ,Y ) = {0} for any X ∈ X and Y ∈ Y.

(ii) If XR is a right R-module such that HomR(X ,Y ) = {0} for
any Y ∈ Y then X ∈ X .

(iii) If YR is a right R-module such that HomR(X ,Y ) = {0} for
any X ∈ X then Y ∈ Y.

In this case, X is said to be a torsion class and Y is a torsion-free
class. The objects of X are called torsion modules and the objects
in Y are called torsion-free modules.



Basic Definitions

Let (X ,Y) be a torsion pair. If MR is a right R-module, the
largest submodule of MR that is an object of X called the torsion
submodule of M and is denoted by t(M). t is indeed a functor and
a radical. So that, there is an exact sequece

0→ t(M)→ M → M/t(M)→ 0

where M/t(M) ∈ Y.



Basic Definitions

I A class of modules X is torsion if and only if it is closed under
isomorphisms, extensions, coproducts and quotients.

I Dually, a class of modules Y is a torsion-free class if it is
closed under isomorphism, extensions, submodules and
products.

I Notice that if a class of modules Y is closed by products,
coproducts, subobjects, quotients and extensions then Y is a
torsion class and a torsion free class at the same time.
Therefore, one has a triple (X ,Y,Z) such that (X ,Y) and
(Y,Z) are torsion pairs. Such a triple is called a TTF-triple.
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Let 0 −→ M
h−→ N

f−→ K −→ 0 be an exact sequence of right
R-modules and let L

g−→ K −→ 0 be an onto homomorphism. We
consider the pullback of f and g to obtain a commutative diagram
with exact rows and columns:

0 0
↓ ↓
X = X = Kerg
↓ε2 ↓

0 −→ M
ε1−→ L′

π2−→ L −→ 0
q ↓π1 ↓g

0 −→ M −→
h

N −→
f

K −→ 0

↓ ↓
0 0

(1)



In (1),

I L′ = {(x , y) ∈ N ⊕ L|f (x) = g(y)}.
I The maps π1 : L′ → N and π2 : L′ → L are restrictions of the

canonical projections π1 : N ⊕ L→ N and π2 : N ⊕ L→ L,
respectively.

I The homomorphism ε1 : M → L′ is defined by
ε1(x) = (h(x), 0) for each x ∈ M, and ε2 : X → L′ is defined
by ε2(y) = (0, y) for each y ∈ X .



Lemma[A, Herbera-2016]

Let (X ,Y) be a torsion pair in Mod-R such that the associated
torsion radical t is exact. Assume that in diagram (1), M ∈ X and
K , L ∈ Y.

I If X is small in L, then ε2(X ) is small in L′.

I In particular, if LR and MR are flat, then π1 : L′ → N is a
G -flat cover of N.

I g is right minimal if and only if π1 is right minimal.



Useful facts on TTF-triples

Let R and S be rings such that there is an exact sequence

0→ I → R
ϕ→ S → 0

where ϕ is a ring morphism such that RS becomes a flat module.
Consider the following classes of modules

X = {X ∈ Mod-R | XI = X}

Y = {Y ∈ Mod-R | YI = {0}}

Z = {Z ∈ Mod-R | annZ (I ) = {0}}

then (X ,Y,Z) is a TTF-triple such that the torsion pair (X ,Y) is
hereditary and ExtiR(X ,Y ) = 0 for any i ≥ 0, X ∈ X and Y ∈ Y.
Moreover, the torsion radical associated to the torsion class X is
naturally equivalent to the exact functor −⊗R I , and the torsion
radical associated to the class Y is naturally equivalent to the
functor HomR(S ,−).
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Corollary

Let R and S be rings such that there is an exact sequence

0→ I → R
ϕ→ S → 0

where ϕ is a ring morphism such that S becomes a flat R-module
on the right and on the left. Then:

(i) MR is flat if and only if M ⊗R S is a flat right S-module and
MI is a flat right R-module.

(ii) Let M be a right S-module, then M is cotorsion as a right
R-module if and only if it is cotorsion as an S-module.



Proposition[A, Herbera-2016]
Let S ⊆ T be an extension of rings. Let

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}.

Then, the following statements hold.

(i) The map ϕ : R → S defined by ϕ(x1, x2, . . . , xn, x , x , . . .) = x
is a ring homomorphism with kernel

I =
⊕
N

T =
⊕
i∈N

eiR,

where ei = (0, . . . , 0, 1(i), 0, 0, . . .) for any i ∈ N.

(ii) I is a two-sided, countably generated idempotent ideal of R
which is pure and projective on both sides. Therefore, S is flat
as a right and as a left R-module.

(iii) For any i ∈ N, the canonical projection into the i-th
component πi : R → T has kernel (1− ei )R so that T is
projective as a right and as a left R-module via the R-module
structure induced by πi .
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Remark

Let R be a ring as in the Proposition. Then there is a TTF-triple
(X ,Y,Z) associated to the pure exact sequence

0→ I → R
ϕ→ S → 0

where X = {X ∈ Mod− R | X = ⊕i∈NXei},
Y = {Y ∈ Mod− R | YI = {0}}
Z = {Z ∈ Mod− R | annZ (I ) = {0}}. Also, for any i ∈ N, the
split sequence

0→ R(1− ei )→ R
πi→ T → 0

yields a corresponding (split) TTF-triple (Xi ,Yi ,Zi ).



Proposition[A, Herbera-2016]

(i) J(R) contains J =
⊕
N J(T ). Moreover, J is essential on

both sides into J(R). In particular, J(R) = 0 if and only if
J(T ) = 0.

(ii) R is von Neumann regular if and only if S and T are von
Neumann regular.

(iii) Let MR be a right R-module. Then MR is flat if and only if
M ⊗R S is a flat right S-module and, for any i ∈ N, Mei is a
flat right T -module.



Main Theorem [A, Herbera-2016]

Let S ⊆ T be an extension of rings. Assume T is von Neumann
regular and that S is right G -perfect. Then

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}

is a right G -perfect ring such that J(R) = 0.
Moreover, if S is a ring such that flat covers are G -flat covers, then
also R satisfies this property.



Proof

I By the properties of R, it readily follows that J(R) = 0.

I Let N be any right R-module. There is a pure exact sequence

0 −→ NI ∼=
⊕
i∈N

Nei −→ N
f−→ N/NI −→ 0.

I Since T is von Neumann regular, for any i ∈ N, Nei is a flat
T -module.

I Hence NI is flat as a right R-module.
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...Proof...

Let 0→ X → L
h→ N/NI → 0 be a G -flat cover of the right

S-module N/NI . Considering the pullback of h and f yields the
following diagram with exact rows and columns

0 0
↓ ↓
X = X = Kerh
↓ ↓

0 −→ NI −→ L′
π2−→ L −→ 0

q ↓π1 ↓h

0 −→ NI −→ N
f−→ N/NI −→ 0

↓ ↓
0 0



...Proof...

I Since the radical associated to the torsion pair (X ,Y) is exact
and L ∈ Y, π1 is a G -flat cover of N.

I Now assume, in addition, that 0→ X → L
h→ N/NI → 0 is a

flat cover of the right S-module N ⊗R S .

I In particular, XS is cotorsion.

I XR is also a cotorsion module, hence 0→ X → L′
π1→ N → 0

is a flat precover of N.

I it follows that π1 is also a flat cover.
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Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F -algebra
such that J(S) 6= 0.

I Since S is artinian, it is G -perfect.

I If dimF (S) = n, then S ↪→ T = Mn(F ) which is von
Neumann regular.

I Therefore,

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}

is G -perfect by Main Theorem.

I By the properties of the ring, J(R) = 0 and R is not von
Neumann regular.

For a particular realization of such a ring R consider, for example,

S =

(
F F
0 F

)
. In this case, T can be taken to be M2(F ).



Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F -algebra
such that J(S) 6= 0.

I Since S is artinian, it is G -perfect.

I If dimF (S) = n, then S ↪→ T = Mn(F ) which is von
Neumann regular.

I Therefore,

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}

is G -perfect by Main Theorem.

I By the properties of the ring, J(R) = 0 and R is not von
Neumann regular.

For a particular realization of such a ring R consider, for example,

S =

(
F F
0 F

)
. In this case, T can be taken to be M2(F ).



Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F -algebra
such that J(S) 6= 0.

I Since S is artinian, it is G -perfect.

I If dimF (S) = n, then S ↪→ T = Mn(F ) which is von
Neumann regular.

I Therefore,

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}

is G -perfect by Main Theorem.

I By the properties of the ring, J(R) = 0 and R is not von
Neumann regular.

For a particular realization of such a ring R consider, for example,

S =

(
F F
0 F

)
. In this case, T can be taken to be M2(F ).



Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F -algebra
such that J(S) 6= 0.

I Since S is artinian, it is G -perfect.

I If dimF (S) = n, then S ↪→ T = Mn(F ) which is von
Neumann regular.

I Therefore,

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}

is G -perfect by Main Theorem.

I By the properties of the ring, J(R) = 0 and R is not von
Neumann regular.

For a particular realization of such a ring R consider, for example,

S =

(
F F
0 F

)
. In this case, T can be taken to be M2(F ).



Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F -algebra
such that J(S) 6= 0.

I Since S is artinian, it is G -perfect.

I If dimF (S) = n, then S ↪→ T = Mn(F ) which is von
Neumann regular.

I Therefore,

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}

is G -perfect by Main Theorem.

I By the properties of the ring, J(R) = 0 and R is not von
Neumann regular.

For a particular realization of such a ring R consider, for example,

S =

(
F F
0 F

)
. In this case, T can be taken to be M2(F ).



Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F -algebra
such that J(S) 6= 0.

I Since S is artinian, it is G -perfect.

I If dimF (S) = n, then S ↪→ T = Mn(F ) which is von
Neumann regular.

I Therefore,

R = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T , x ∈ S}

is G -perfect by Main Theorem.

I By the properties of the ring, J(R) = 0 and R is not von
Neumann regular.

For a particular realization of such a ring R consider, for example,

S =

(
F F
0 F

)
. In this case, T can be taken to be M2(F ).



Example 2 [A, Herbera-2016]

Let R be as in Example (1).

I Then, R ⊆
∏
Mn(F ) = T ′ which is a von Neumann regular

ring.

I R ′ = {(x1, x2, . . . , xn, x , x , . . .)|n ∈ N, xi ∈ T ′, x ∈ R} is also a
G -perfect ring.



Open Questions

In general, it is difficult to compute Enochs flat covers. If
projective covers exist, then they coincide with Enochs flat covers.
So the question is:
Question 1: What is the relation, if any, between G -flat covers and
Enochs flat covers?
Question 2: Let R be a semiregular ring with right T -nilpotent
Jacobson radical, is it G -perfect?


